Engineering & Computer Science (General)
Special Issue Information
Dear Colleagues,
In the current Big Data era, digital information pervades most Complex Systems. This is especially due to the wide integration of the Internet of Things in several sectors. This integration gives the opportunity to enhance business performance and achieve business competitiveness. Such opportunities are now pushed forward by the rise of Digital Twins that have become more affordable and promise to drive the future of complex systems.
A Digital Twin (DT) is a digital representation of a physical entity, system, or event. It mirrors a distinctive object, process, building, or human, regardless of whether that thing is tangible or non-tangible in the real world. DTs can leverage the advancement in Artificial Intelligence, Machine Learning, Cognitive Computing, Edge and Cloud Computing, and Augmented and Virtual Reality, to offer a great amount of business potential by predicting the future instead of analyzing the past of complex systems allowing us to evolve towards ex-ante business practices. To achieve these benefits, we must face the following challenges: accurate representation of physical objects; automatic evolution in real-time; runtime connectivity; process collaboration; conflict detection and resolving; human interaction; safety and security. In doing so, we must provide conceptualizations of DTs, define new DT engineering methodology, develop user-friendly software for the development of DT solutions, and foster the adoption of DT within complex systems.
The objective of this Special Issue is to gather empirical, experimental, methodological, and theoretical research reporting original and unpublished results contributing to the definition, design, implementation, and application of DT, shedding light on the continuous enhancement of complex systems integrating DTs, and that present possible solutions to open challenges, that proposes software solutions, practical experiences, use-cases, and case studies.
Potential topics include, but are not limited to:
Dr. Fabrizio Fornari
Dr. Pedro Valderas
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Big Data and Cognitive Computing is an international peer-reviewed open access quarterly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
This special issue is now open for submission.